Water speakers enhanced with an Arduino Mega

Maker “cool austin” is a fan of water speakers, which pulse jets of water inside plastic enclosures to the beat of your music, but thought they could be improved.

What he came up with is a multi-tower setup that not only dances with light and water to the beat of the music playing, but splits up the pulses into frequencies a la a VU meter.

The project uses an Arduino Mega—chosen because it has sufficient PWM outputs to control the water and lights in five of these enclosures via MOSFETs—to output signals to the water units for an excellent audio-visual display.

Water speakers from the store are great to watch, but I felt they could do more. So many years ago I had modified a set to show the frequency of music playing. At the time I used the Color Organ Triple Deluxe II, combined with a set of photocells potentiometers and transistors I was able to get a set of 3 speakers to function.

I then a few years ago had heard about the IC MSGEQ7 which has the ability to separate audio into 7 data values for an Arduino to read. I utilize an Arduino mega 2560 in this project because it has the required number of PWM pins to drive five water towers.

You can find more details on the water speaker equalizer here, and see it in action below!

Arduino Blog

Pour Reception turns water into radio controls

Using a capacitive sensing arrangement, artists Tore Knudsen, Simone Okholm Hansen, and Victor Permild have come up with a way to interact with music with two glasses of water.

One pours water into a glass to turn the radio on. Channels can then be changed by transferring water from one glass into the other, and fine-tuned by touching the outside of container. Volume can even be adjusted by poking a finger into the water itself.

An Arduino Leonardo is used to pick up capacitive signals, and data is then sent a computer where a program called Wekinator decodes user interactions.

Pour Reception is a playful radio that strives to challenge our cultural understanding of what an interface is and can be. By using capacitive sensing and machine learning, two glasses of water are turned into a digital material for the user to explore and appropriate.

The design materials that we have available when designing digital artifacts expands along with the technological development, and with the computational machinery it is possible to augment our physical world in ways that challenges our perceptions of the objects we interact with. In this project, we aim to change the users perception of what a glass is – both cultural and technical.

You can see it in action below, and read more about the project in its write-up here.

Arduino Blog

How Rogue Ales Makes a Great Beer from Wet Hops, Clean Water and Innovation

Rogue beers

The challenge is local and global. The world has a major perishables problem. A full 30 percent of all perishable produce and products never make it all the way from the farm to the table. For Rogue Ales in Newport, Ore., that means that some of their hops can’t be used in the best way possible, which means they can’t produce the best beer possible.

Intel has become a key ingredient in delivering fresh goods through more efficient supply chain tracking tools and management.

For the US and the world, that means less theft, less rotting and better food. For Rogue, that means fresher hops and better beer.

Hoppy Hazards

Fresh goods and efficient supply chain

Rogue produces hops meant to be used in brewing “fresh hop” or “wet hop” beers. In other words, the hops are not dried in the field but are shipped quickly for immediate use in breweries. In fact, these hops have to be dropped into a vat of beer within 12 hours of harvest, or they start to go bad.

And fresh hops can be more hazardous than you might expect. If they overheat, the volatile oils with which the brewer infuses them can infiltrate the beer and produce an “off” flavor. Think about how lovely compost smells as it decomposes. Who’d want to drink that?

Connected Reporting

Hops being shipped

Enter the Intel Connected Logistics Platform. Rogue learned that this platform is used in the shipping of 1.1 billion units of products to 24 warehouses in 68 countries worldwide. Logistics experts rely on Intel technology because the platform brings clear visibility on each shipment, helping them see exactly where the freight is and what condition it’s in.

Intel’s multifaceted tracking strategy empowers shippers to look at data on each shipment, immediately react to that data, and optimize around that data, helping future shipments arrive on time with minimal losses. All these insights are driven by Edge Intelligence, powered by a quad core processor inside of each gateway, which can deliver data whether it’s connected or not.

Saving the Hops

Using the Intel Connected Logistics Platform, Rogue set out to collect temperature and humidity data on its shipments of hops, at every stage between the hop yard and the brewery. Intel’s sensors tracked each shipment’s location via GPS and noted whether temperature or humidity rose above or below acceptable boundaries.

With the help of nearly real-time data on each step of the transit process, Intel Connected Logistics Platform has given Rogue the power to take diligent care of each shipment of wet hops. After the hop harvest process, each shipment gateway is tagged with three tags per bin – one at the top, one in the middle, and one at the bottom – to ensure comprehensive tracking from the harvest all the way to the brewing vat.

As a result of Intel’s in-depth tracking, Rogue’s shipments of hops now stay more consistently fresh. The proof is in the hops: Take a taste, and see for yourself.

To stay informed about Intel IoT developments, subscribe to our RSS feed for email notifications of blog updates, or visit intel.com/IoTLinkedInFacebook and Twitter


IoT@Intel

Case Study: ‘Intelligence on tap’, inside Veolia Water’s smart grid for water services deployment

Inside Veolia Water’s utilisation of Actility’s ThingPark Energy to power a smart grid for water services

When someone talks about a smart grid, the first thing you’ll think of is electricity; if they talk about industrial IoT you’ll probably be imagining factory monitoring and automation. But in this case study, we’ll be taking a look at how combining sensing and remote control throughout a network with data analytics, process modelling and forecasting can make a giant of the water industry more efficient and open up new business opportunities. Welcome to Veolia’s Smart Water Network.

Veolia Water is a world’s largest supplier of water services, originally based in France but now operating on a large scale across Europe, in the Americas, the Middle East, Africa and APAC. The company provides managed fresh water and waste water services for municipal and industrial clients, handling every step in the water cycle, from capture to treatment, distribution, waste water recovery and processing and release back into the environment.

Energy consumption is involved throughout this cycle, pumping water through the treatment facilities and the pipes connecting them, to homes and then back through the waste water processing. Buying electricity is a significant cost for Veolia. More than 80% of that electricity is used for pumping and aeration. Typically, pumping stations buy electricity at fixed rates, with little price difference between peak and off-peak hours. However, prices in the wider electricity market vary much more significantly.

This creates opportunities for consumers like Veolia, with the flexibility to schedule their operations to an alternative timetable and react swiftly, to create additional business value from its extensive storage capacity – water tanks – and large number of electrical devices such as pumps, valves and aerators, which can be activated and shut down very quickly.

Encouraged by an increase in water production and tougher environmental challenges Veolia selected Actility’s ThingPark Energy platform to improve the efficiency of its pumping stations and treatment plants. Actility brings its tried and tested real-time optimisation algorithms to bear on modelling the complex water process. Realtime planning and scheduling is driven by the demands on the water network at any given time combined with live data on electricity pricing from the supplier market. Hundreds of electricity consuming devices are remotely controlled, taking into account fluctuating energy prices. The final operational plan is scheduled to minimise the overall cost of electricity whilst ensuring that operational demands on the network are always met.

Being flexible pays dividends Actility’s ThingPark Energy Platform makes use of high performance data analytics tools originally developed for demand-response tools to secure electricity supply grids against unusual peaks in energy usage. The predictive modelling capability enables the system to respond automatically with the best solution when faced with unplanned situations. The system learns and the operational plan is updated automatically, whilst continuing to respect the constraints of the underlying processes. The automated system provides significant levels of support to on call-operation teams, reducing workload and supporting good decision making. The same prediction capabilities, combining with operational monitoring of systems […]

The post Case Study: ‘Intelligence on tap’, inside Veolia Water’s smart grid for water services deployment appeared first on IoT Now – How to run an IoT enabled business.

Blogs – IoT Now – How to run an IoT enabled business

Robot swans to measure water quality in Singapore

singapore swan robots measure water quality on resevoirs

Robotic swans are being deployed in Singapore’s reservoirs to provide real-time assessments of water quality. The project is the culmination of work by the city state’s national water agency and the National University of Singapore.

Despite the best efforts of conscientious scientists, not all IoT solutions blend into their environments. Technology and utility tend to be prioritized over aesthetics. Unless you live or work near Singapore’s Marina, Punggol, Serangoon, Pandan and Kranji reservoirs, that is.

A joint project involving national water agency PUB, the National University of Singapore’s (NUS) Environmental Research Institute and the Tropical Marine Science Institute aims to gather data in a less conspicuous manner.

Read more: 100,000 IoT sensors line canal in China’s ambitious water diversion project

An elegant IoT solution

Designing a robotic swan that’s convincing to the human eye – albeit from a distance – is one thing. But the team behind the project has also fit each swan with all the tools it needs to move around reservoirs and sample water quality.

Using wireless technology, each swan is able to transmit live results to PUB, removing the need for teams to be sent out to take samples manually.

According to Channel News Asia, the SWAN project (Smart Water Assessment Network) will be used to monitor the City State’s fresh water pH, dissolved oxygen, turbidity and chlorophyll. All of these elements are used to determine the overall water quality.

Professor Mandar Chitre a member of the team behind SWAN from the National University of Singapore, said, “we started with a number of smaller bird models before we decided on the swan. It’s just the right size. If you look at it in the environment, it looks just like a swan swimming around.”

Read more: Underwater Antarctic robot Icefin prepares for Jupiter mission

Water-based robots combine with IoT once again

This is not the first time that scientists have looked to the natural world for inspiration when designing robots for use in water.

Last year, a similar project from EPFL in Switzerland developed a robotic eel to report on the water quality in Lake Geneva. Unlike the SWAN project, EPFL’s Envirobot was designed to mimic the movement of its real-life equivalent. But both have provided researchers with a way to measure water quality remotely.

With the addition of more data points and increased autonomy, it may not be long before more of these robots are spotted roaming our rivers, reservoirs and oceans.

Read more: Singapore companies settle on Sigfox for smart rodent control

The post Robot swans to measure water quality in Singapore appeared first on Internet of Business.

Internet of Business