Water speakers enhanced with an Arduino Mega

Maker “cool austin” is a fan of water speakers, which pulse jets of water inside plastic enclosures to the beat of your music, but thought they could be improved.

What he came up with is a multi-tower setup that not only dances with light and water to the beat of the music playing, but splits up the pulses into frequencies a la a VU meter.

The project uses an Arduino Mega—chosen because it has sufficient PWM outputs to control the water and lights in five of these enclosures via MOSFETs—to output signals to the water units for an excellent audio-visual display.

Water speakers from the store are great to watch, but I felt they could do more. So many years ago I had modified a set to show the frequency of music playing. At the time I used the Color Organ Triple Deluxe II, combined with a set of photocells potentiometers and transistors I was able to get a set of 3 speakers to function.

I then a few years ago had heard about the IC MSGEQ7 which has the ability to separate audio into 7 data values for an Arduino to read. I utilize an Arduino mega 2560 in this project because it has the required number of PWM pins to drive five water towers.

You can find more details on the water speaker equalizer here, and see it in action below!

Arduino Blog

Automated IC testing with Arduino Mega

Arduino boards by themselves are, of course, great for making a wide array of projects. Sometimes, however, you’ll need to add other integrated circuits (ICs) for extra functionality. If you want to be absolutely sure that the IC you’re using in your project is working correctly, this tester by Akshay Baweja will input the signals to the device, and analyze the outputs that it produces on a 2.4” touchscreen.

While this type of equipment would normally be quite expensive, Baweja’s Arduino Mega-powered gadget can be built for around $ 25.

I designed a shield for all components to fit-in and chose the Arduino Mega as my microcontroller board since both the ZIF Socket and LCD can be put side by side giving the build a compact and portable look and feel.

Be sure to check it out being demonstrated below, and if you want to create your own, code can be found on GitHub.

Arduino Blog

3D-printed miniature roller coaster powered by Arduino Mega

While many enjoy roller coasters, few can claim the same dedication of engineer Matt Schmotzer, who 3D-printed a 1/25th scale replica of Invertigo, a boomerang coaster at Kings Island in Ohio.

As reported on 3D Printer Chat, the CAD model took only a week to complete, but 3D printing this 4’ x 8’ creation took an incredible 450 hours. This doesn’t include the countless hours spent assembling and debugging it.

The coaster runs on an Arduino Mega, using 42 of the 54 available IO pins. This allows it to not only lift and drop the coaster, but also feature details like actuated gates and restraints to keep the tiny imaginary passengers safe.

Be sure to check it out in the video below!

Arduino Blog

1960s jukebox modernized with an Arduino Mega

As seen here, artist Tijuana Rick’s father-in-law received a 1969 Wurlitzer 3100 jukebox for free, with one small catch. It didn’t come with any records. Of course, Rick could have purchased vintage records from a number of sources, but instead decided to transform it into an amazing retro music streaming device.

In order to take input from the jukebox’s 40+ interface buttons, he turned to the Arduino Mega. After the Mega receives these on/off signals, it then pushes selection information to a Raspberry Pi, which does the actual streaming.

Luckily, he had stumbled upon this GitHub repository from Thomas Sprinkmeier, which became the foundation for the project’s software. You can find more details and images of Tijuana Rick’s restoration on his website, including how he cast replacement buttons that he needed for the jukebox in silicon molds!

Arduino Blog