Smart trucks bring opportunity and loss to supply chains, analysts say

Analysts say smart trucks bring opportunity and loss to supply chains

Traditional logistics and freighter supply chain operations are set to be disrupted by the advent of smart trucks, such as those designed by Uber, a recent report from analyst house Frost and Sullivan suggests.

In the analysis, Developments in the Global Connected Truck Market Shaping the Future of Logistics, the firm outlines a future in which 35 million trucks, ranging from the partially connected to the fully autonomous, will feature in global supply chains by 2020.

The market is therefore projected to grow at a compound annual growth rate (CAGR) of 40.9 percent, garnering $ 20.5 billion in the process, as the trucking industry becomes smarter, more efficient and, consequently, more productive.

However, this transformation from analogue to digital also poses problems for some in the industry.

Smart trucks bring opportunity and loss

“The logistics industry is expanding to include unconventional players, resulting in innovative and unique value-added services,” said Frost & Sullivan Mobility senior analyst, Krishna Chaithanya Bathala.

“As logistics service providers (LSPs) shift from mere outsourced logistics to more non-asset-based and end-to-end, integrated, demand-driven logistics, with an extensive e-business focus on all logistics operations, technologies such as real-time data, sensorization and intelligent autonomous machines, will accelerate the transformation of the logistics and supply chain industry.”

That sounds very positive; however, Bathala also claims that “by 2020, IoT use cases characterized by advanced machine-to-machine capabilities and sensor fusion will make the traditional supply chain models redundant.”

“The shift away from vehicle-centric platforms to IoT-based platforms that connect vehicles, warehouses, and infrastructure, is expanding opportunities for key ecosystem participants,” Bathala says, but that leaves traditional players trying to catch up to the technologists with the capability to support smart trucks.

Read more: Zebra launches intelligent loading system in bid to drive connected supply chain

Partner power

Frost and Sullivan is indicating that strategic partnerships between OEMs and LSPs are now critical to remain competitive and garner growth opportunities in this evolving market.

The firm states that telematics, which includes real-time traffic, tolling, routing and scheduling, parking, freight aggregation, as well as weigh station bypass, will become the key revenue driver for logistics companies looking to get value from their supply chains.

To extract this value, Frost and Sullivan believes LSPs and OEMs must:

  • Develop a brand-agnostic open platform: A single holistic platform with core fleet management solutions (FMS), value-added services, and back-office management software, such as transport management systems (TMS) and enterprise resource planning (ERP), will enhance operational efficiencies;
  • Quickly identify and implement new services through collaborations with start-ups;
  • Develop a cloud-based logistics control tower: A central hub through which the entire ecosystem can capture data across various stages of the supply chain and offer stakeholder-specific dashboards for custom viewership;
  • Ensure data security by partnering with network and data security vendors.

Read more: Multitasking garbage trucks scan streets for more than trash

The post Smart trucks bring opportunity and loss to supply chains, analysts say appeared first on Internet of Business.

Internet of Business

Top Industry Analysts Report on the Biggest Needs for Edge Computing in Industrial IoT

Gartner recently forecasted that the Internet of Things is gaining traction in business – specifically, in manufacturing and Industrie 4.0 applications.  If you are not, you should be considering new tools in your DevOps strategy.

The IoT is fostering the creation of an entirely new class of devices, such as gateways, that allow for new points of data aggregation and intelligence.  Today, gateways are one of the faster growing and developing device categories in the embedded market.

Java IoT Edge Device Development

To satisfy the requirements of sophisticated intelligence, faster time-to-market, and over-the-air updates in IoT Edge devices, developers are turning more to the Java language, runtime, and ecosystem. A survey of 800 engineers conducted by VDC Research (sponsored by Oracle) shows an increase in the use of Java in their current project from 12% in 2008 to 27.4% in 2015. Java improves upon C or C++ as a high-level object-oriented language with automatic garbage collection, robust exception handling, built-in threading model, and extensive libraries for doing all the things an IoT Edge device requires. Programming in Java is safer and more reliable by avoiding common coding errors, such as dereferencing stale pointers and trampling memory. The VDC report also shows that for a typical ARM-based project shipping 1M units, using Java would save 40% in software development costs compared to C.

Your industrial environment probably requires connectivity to real-time embedded applications

Something traditional Java cannot handle well is real-time. Real-time systems have to guarantee that they will respond to an event or input within a deadline. Most Java programmers have experienced the unexpected delays that can occur when a “stop-the-world” garbage collection cycle runs. Depending on the size of heap memory and the fragmentation of live objects, Garbage Collector (GC) pauses can last hundreds of milliseconds up to several seconds. But GC pauses are just one of the many traditional Java real-time shortcomings. For example, the Just-in-Time (JIT) compiler may delay execution of a critical piece of code. Java thread priority is treated as little more than a hint to the operating system scheduler, which may unpredictably favor low-priority threads over high-priority threads. Worse yet, a priority inversion can occur, blocking a high priority thread from running indefinitely. Add to this the effects of page faults, random preemption by other processes, and the lack of precise timing APIs and you might be convinced that Java could never guarantee a program will ever finish, let alone meet a deadline.

Real-time Development with PTC Perc

PTC Perc is a real-time development tool chain and virtual machine that addresses all of these real-time execution concerns.  The PTC Perc product has been deployed in real-world, real-time systems since 1998 and is used in telecommunications, industrial control, aerospace, automotive, and defense applications. IoT/IIoT is now demanding that embedded real-time systems evolve with new expectations for device connectivity. Rising to meet that demand, PTC Perc is now taking on the Internet of Things as a key technology for edge devices that need to react within milliseconds to critical events.

Learn where the IoT Edge Device market is headed

VDC’s whitepaper titled, “The Real Need for Real-Time Java Gateway Solutions” highlights how IoT has accelerated the evolution of traditional embedded device classes.

According to VDC Research, the need for gateway solutions in IoT are:

  • Increasingly intelligent edge devices
  • The rapidly growing amount of data being created by IoT devices
  • Standardization of fragmented and evolving wire/wireless Technology
  • And the growing experience developing with Java in embedded engineering organizations

The post Top Industry Analysts Report on the Biggest Needs for Edge Computing in Industrial IoT appeared first on ThingWorx.

Thingworx Blog – ThingWorx